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ABSTRACT

This paper is motivated by questions concerning the planning of motion in

robotics. In particular, it is concerned with the motion of planar linkages

from the complexity point of view. There are two main results. First, a

planar linkage can be constrained to stay inside a bounded region whose bonn-

dary consists of straight lines by the addition of a polynomial number of new

links. Second, the question of whether a planar linkage in some initial confi-

guration can be moved so that a designated joint reaches a given point in the

plane is PSPACE-hard.
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"1. Introduction

This paper is concerned with the motion of linkages from the computational complexity point

of view. The resemich was motivated by earlier work in robotics, particularly that of Lozano-Perez

Uand Wesley [LWV791, Lozano-Perez IL-801, Reif [R-791 and Schwartz and Sharir [$41, S-821. There

i" are two natural ways in which linkage movement problems arise in robotics. First, a linkage can

*i model a robot arm. A frequently encountered model consists of a sequence of links connected

together consecutively at movable joints. Second, linkages can also model hinged objects being

moved by an arm or other type of manipulator. In both cases, it is essential to plan collision-

o avoiding paths of motion, as the manipulator and the object it is moving are generally required to lie

within regions whose boundaries are determined by walls and the presence of other objects in the

work space.

A linkage is a collection of rigid rods called link, (see Figure 1.1). The endpoints of various

" links are connected by joints, each joint connecting two or more links. The links are free to rotate

about the joints. In a planar linkage, inks are allowed to cros over one another, and the linkage

omay be fastened to the plane so that the locations of certain joints are fixed (the fixed joints ae

indicated by "x"s).

In a physical realization of a planar linkage, each link could move in a separate plane parallel

to the ground. If links were joined together or to the ground by pins, then a link in one plane might

collide with a pin joining links in two other planes. However, it is not difficult to design simple dev-

ices that function like pins but that do not interfere with the motions of the linkage. Thus the

mathematical model in which links crow over one another and in which the locations of some joints

are fixed can be physically realized.

(a) (b)
Figure 1.1 (a) A linkage (b) An arm
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An arm is a simple type of linkage consisting of a sequence of links joined together consecu-

tively with the location of one end fixed.

Suppose that an arm is required to stay inside some bounded region R of the plane that is con-

nected, but not necessarily simply connected. Then it is a natural question to ask whether new links

can be adjoined to the arm in such a way that the original links in the arm automatically stay inside

R. The new links may move outside R, and some of the links may have an endpoint rfied in the

plane. The key requirement is that no motion of the arm inside R be prevented by the addition of

the new links. Clearly this can be done if R is a circular region. In Figure 1.2 we show an arm con-

strained by a circular region C with and without the circle being physically present.

CN

! \ /
/ new links

AI

With the circle present Without the circle present

Figure 1.2 An arm constrained by a circle

The reason that we are interested in reductions of this sort is that the motions of the new link-

age can be studied without reference to the region R. The first main result of our paperis that for

any connected, but not necessarily simply connected, region R whose boundary consists of a rmite

set of straight line segments and any linkage L positioned within R, there is a reduction of the type

we have just described. What's more the new linkage has a description whose size is polynomial in

the size of the description of the original linkage and region R and the description can be computed

in polynomial time.

Our second result is that the reachability question for planar linkages is PSPACE-hard. In

other words, given an initial configuration of an arbitrary planar linkage L, a joint J in that linkage,
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and a point p in the plane, the question of whether L can be moved so that J reaches p is

PSPACE-hard.

The main technique used throughout the paper is to build complex linkages by connecting

together simpler special purpose linkages. Some of these simplier linkages da. from the 19th cen-

tury and are described in Section 2. These include Peaucellier's straight line motion device, a linkage

containing a joint whose locus is ezactly a straight line segment and linkages that translate and

rotate vectors and multiply distances.

Section 3 contains an easy demonstration that a linkage required to move inside a bounded

convex polygonal region R can be embedded in a more complex linkage that enforces the boundary

constraint for the original linkage. The extension of this result to a linkage L constrained to move

inside a nonconvex bounded region R with straight line boundaries appears in Section 4. We obtain

this result by triangulating the complement of R in its convex hull H, designing a linkage that con-

tains a joint whose locus is a triangle, and then using this device to build a linkage that can keep a

link entirely outside a triangle. By keeping each link of L outside each triangle in H-R while

requiring each joint of L to remain inside H, we keep L inside R. We do this in such a way that

the motion of L is not restricted in any other way.

Section 5 contains our other main result-that the reachability question for planar linkages is

PSPACE-hard. We obtain this result by designing a linkage that can simulate a linear bounded

automaton LBA. The result should be compared to Reirs result (R-791 that in 3-dimensional space,

the reachability problem is PSPACE-hard even for a simple, hinged, tree-like linkage required to

move in a nonconvex region.

2. SImple inkage.

3.1 Overview

This section describes planar linkages that perform certain tasks. After a discussion in Section

2.2 of Peaucellier's straight line motion linkage, we show in Section 2.3 how to use this device to

build linkages that can translate and rotate vectors. Then in Section 2.4 we use these devices to give

a modified version of Kempe's construction of a linkage that "solves" a multivariable polynomial
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equation [K-18761. This linkage has certain joints whose positions represent values of variables

Z.. Zand the onl constraint that the linkage puts on the motion of these joints is that the

implied values of the z, stay within liven bounded dom;Jns and satisfy a given polynomial equation.

The linkage for solving a polynomial equation plays an important role in both the main results.

We use it to keep links outside of triangular regions when we show how to build boundary con-

straints into a linkage in Section 4. We also use it to synchronize the motions of the LBA simulator

given in Section S. Two important subtleties arise in designing special purpose linkages.

First, we often want to construct a linkage L having a joint J whose locus is some specified set

of points. It is important to understand that in such a case, L must he able to move to all points in

the set but to no other points. Historically, some linkages that have been proposed for performing

certain tasks have been faulty because, while they are able to move in some desirable way, they can

4 also move to "configurational singularities" at which they can begin undesired motions. Hence we

include correct versions of the linkages that we use.

The second important subtlety is this. Suppose that the locus of some joint .i in linkage L is a

set of points S and that the locus of some joint P' in linkage L' is a set S'. Now suppose that J and

JP are identified. It is not necessarily true that the joint J-J" can then reach all points in S n1 S1.

Indeed S n' S' need not be connected! The crucial observation here is that the new linkage can move

so that the coordinates of J are given by (t),t) where:z and y are continuous functions of time,

if and only if L and L' can move separately so that both the coordinates of J and the coordinates of

P' are also given by (()ut)

2.2 Peaucellier's, straight line motion linkage

In 1884 Peaucellier JP.18641 designed a linkage, shown in Figure 2.2.1, that converts circular

motion to linear motion. Links AD, AB, DC and BC have equal length as do links EA and EC.
4

The length of FD equals the distance from E to F. The locations of joints E and F are fixed points

in the plane, but the linkage is allowed to rotate about these points. As it does, the joint B traces

out the line segment XY. This can be seen by observing two facts. First, joints D and B always lie

on a ray through E. Second, the distances h, r and f shown in Figure 2.2.2 satisfy



A B'

101

C

Figure 2.2.1 The Peaucellier straight fine motion linkage

A

b.

Fiur .22Cosdeaio f ange hA n

* th~~~~~~iue posiCosiertion ofD.Hechideceanb thoughnofes pformn th e nonmapn

called "inversion -with respect to a circle" [E-631. In this mapping, the image of a point pm(r .9) is



the point 9 -- (r j 0) where rr is some given constant. It is known that this mapping takes circles to

circles, where a straight line is regarded as a circle of infinite radius. Suppose that the joint E of the

Peaucellier device is at the origin of the polar coordinate system and that the given constant is

b -. 2 Then the device computes the images of the points that D can reach. Since the circle of

radius I FD I about F goes through the origin, this circle is mapped to a straight line, in particular

the line through X and Y. The points X and Y represent the extremes that B can reach.

Notice that the relative lengths of the links is not too important provided that the linkage can

be assembled as shown in Figure 2.2.1 with E,F,D and B on a straight line. In order to argue that

the Peaucellier device works correctly, we must demonstrate that joint B cannot reach joint D. For

if this could occur, the joint B could leave the line segment and trace out part of the circle that D

traces. Similarly we must demonstrate that joint A cannot reach joint C. Joint B cannot reach

joint D since the line XY does not intersect the circle of radius I FD I centered at F. Joint A can-

not reach joint C, since as D moves counter clockwise, say, the angle FDA straightens and prevents

further motion. In this instance, E,D and B are on a straight line with A and C on opposite sides.

The reader is referred to JE-63] for a more detailed discussion.

If instead of constraining the joint D to remain on the circle about F, we allow it to move

inside the circle, (this is done by adding an additiona joint G to the midpoint of the link FD) then

the joint B can reach points in the half plane to the right of XY. It is important that D not be

allowed to move so far right that A and C colapse together. This is done by adding two links res-

tricting B to a circular region of radius EX centered at E. The joint B can follow any curve in the

semicircular region that is the intersection of the half plane to the right of XY with the circle of

radius EX centered at E. (See Figure 2.2.3)

Notice that the region, R, of points reachable by the modified Peauceilier linkage is fairly large

compared to the length of the links used in the linkage. That is, given a polygonal region R the

description of a Peaucellier linkage whose locus of points includes R is polynomially reiated to the

description of R.

4q
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Figure 2.2.3 The region of points reachable by the modified Peaucellier linkage.

We will frequently use the Peaucelier linkage to constrain a joint I of some other linkage to 3

line. This can be done by identifyin the joint J with the joint of the Peancellier linkage that moves

* on a line. When we do this identification, we say that J is moving in a uIot. The geometry and poui-

tioning of the Peaucellier linkage determine the length and position of the slot.

Also observe that the two points of the Peaucellier device that are normally attached to the

plane could instead be attached to a rigid structure made up of links that is free to move in the

plane. In this situation the slot itself has allowable motions. (See Figure 2.2.4.)

x B

/

/

/

'I

Y

Y A

Figure 2.2.4 (a) An arm in a slot (b) A slot on a platform



2.3 Translators and rotators

K We will need linkages to perform certain basic tasks. Since many of the previously published

constructions have deficiencies of the sort described earlier, we include correct versions of these link-

* ages. We do not attempt to construct the simplest linkage for a task, but rather one that is concep-

tually easy to understand and to prove correct. Throughout this section, we assume that R is a

given bounded planar region.

The first device we construct is a translator. A translator is a linkage such that the only res-

triction on the movement of four of its joints S, T, U and V in the region R is that the position of T

relative to S remains the same as the position of V relative to U. Alternatively, any three of these

* - joints can be moved freely, and the position of the fourth joint is uniquely determined by the above

relation and the position of the other three.

4 The linkage consisting of four parallelograms shown in Figure 2.3.1 is a natural candidate for a

translator. Joints S, T and U can be moved to any three points in the plane provided the distance

between S and T does not exceed a+ b and the distance between S and U does not exceed c+ d. At

first it appears that the position of V relative to U is always the same as the position of T relative

* to S, i.e., that the vector ST is equal to the vector UV. The difficulty is that one or more of the

parallelograms may convert to a contraparailelogram (see Figure 2.3.2), and thus other motions are

possible.

T

a a

d
S

Figure 2.3.1. A faulty translator



Figure 2.3.2 Conversion of a parallelogram to a contraparallelogram

One might attempt to overcome this difficulty by attach to each diagonal of the parallelo-

grams a sufficiently short two-link segment. This would keep a parallelogram from straightening.

Unfortunately. this also prevents the movement of T to S when S is held fixed. and this motion is

essential in a construction of Kempe's that we use. We solve the problem by using a more complex

device involving nine parallelograms. The linkage shown in Figure 2.3.3 will be part of this device.

The lengths of the links A 1B1 ,B1 1 and C1Dt can be chosen long enough so that no matter where

A, is positioned inside the bounded region R, D1 can move freely in R while A, is kept fixed and C,

is constrained to move on a line I through A, by means of a slot (see Section 2.2). In fact, if the

links are sufficiently long, then the slot can be constructed so that the angles between I and links

. AIB1 and B 1 1 does not exceed 30" no matter how DI moves in R. (Of course the joints B1 and

C1 are outside R, but this does not concern us, as we will never need to attach them to the joints of

a linkage requireJ to stay inside R.) Also note that the angle between CID1 and I can be kept to at,.l

I B1

R

Figure 2.3.3 Keeping links nearly "vertical". (The slot along I and the two
link connection between A 1 and DI are not shown.)

e-a

• " . . " 
" " 

• 

e
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most 30 by the addition of a two-link segment connecting A1 to D1 and having length equal to the

diameter of R. A similar linkage with joints .A,, A., A 3 and A4 can be constructed so that A 4 can

move freely in R while the angles between .41A., .42-13 and .43A4 and another line ' through At

are kept within 30'. It is convenient to choose I' perpendicular to I since the links in the segments

A ,..., D1 and A 1, ... A 4 will appear as sides of parallelograms in our nine-parallelogram transla -

* tor. The fact that these links can be kept nearly parallel to I and V' will prevent any of the nine

parallelograms from straightening. In this way, we avoid the flaw in the faulty four-parallelogram

translator.

D1  D4

BI  D 2

A1  A2 A3  A4

Figure 2.3.4 The predecessor of a translator.

A 2
D1  

AA4  A3

Figure 2.3.5 A translator. (The constraining devices attached
to segments A ,...,DI and A ,...,A 4 are not shown.)
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To construct the main body of the translator, begin with the nine-parallelogram linkage shown

in Figure 2.3.4. The three link segments connecting AI,B,C l and D, and A1 A2,A3 and A4 are not

yet constrained as described above. Notice (by applying the parallelogram law of vector addition)

that it is possible to move these segments independently of each other without breaking links or

creating contraparallelograms, although parallelograms may straighten. As long as no contraparal-

lelograms are created, the position of D, relative to A, is the same as the position of D4 relative to

A4. Now move D, and A 4 (and hence D4 ) to A,, as shown in Figure 2.3.5, and then attach the con-

straining devices described in the discussion of Figure 2.3.3 to A1,Bi,CI and D1 and to A1,A2,A3 and

A4. Joints D, and A 4 can still move freely in R, but the links in the segments Al,...,D 1 and

A 1,...,A. must remain nearly parallel to I and I, preventing the formation of contraparallelograms.

The next device we construct is called a rotator. A rotator is a linkage such that the only res-

* triction on the movement inside of R of three of its joints A, I and H is that the distance from A to

I be equal to the distance from A to H. In this construction, we begin with the quadrilateral linkage

ABCD shown in Figure 2.3.6s. The lengths of the sides of ABCD satisfy

IADI A I  I ICD ICB I. Then we constrain C to a slot through A. We want to insure that

the slot through A always bisects the angle DAB. We also want to insure that AD and AB can

* rotate freely about A, so it is necessary that ABCD be able to straighten to allow links AB and AD

to cross over each other. However, when B coincides with D, B and D must not be allowed to

simultaneously move off the line AC in the same direction. If this happens the slot through A would

no longer bisect the angle DAB. To solve this problem, we construct another quadrilateral AGFE

with link lengths satisfying JAG I-I I < IFG I-IFEI and also,

I AE I + I EF I > I AD I + I DCI. Then we constrain F to move in the slot through A in which C

moves. Finally, we join the quadrilaterals by adding links ED and BG. Now D and B can rotate

freely about A (for an appropriately designed slot), but ABCD must be straight whenever B and D

coincide. Hence, B and D cannot move to the same side of the slot through A and the slot remains

the bisector of angle DAB.

Now we attach platforms to AD and AB (as shown in Figure 2.2.4), and slots that coincide

with AD and AB. We then add links IJ and HJ, where I is constrained to move in the slot along
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F

vC

C CIC

slot

E D jB G D J B J

slot slot
HI

A A A

(a) (b) (C)

Figure 2.3.6 A distance rotator. Without the addition of the quadrilateral
AGFC, D could move to B and the two superimposed joints could

then move to the same side of the slot through A and C. Hence
the slot through A and C would no longer bisect angle DAB.

AD. H is constrained to move in the slot along AB, and I is constrained to the slot in which C and

F move. Since triangles AMl and AJ are always congruent, the distance between A and I must

equal the distance between A and H. Note that this is the only constraint on the motion of I and

H. This completes the construction of a rotator.

4 Now we combine a translator that keeps the relative position of T to S equal to the relative

position of V to U (but does not otherwise restrict their motions inside R) with a rotator that keeps

the distance between A and H equal to the distance between A and I (but does not otherwise con-

strain their motions inside R). WVe do this simply by identifying A with U and H with V. The

result is a linkage containing four joints 5, T,A U and I whose motions inside R must satisfy only

4
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one requirement, that the distance between S and T be equal to the distance between A= U and I.

We call this device a disance copier.

A distance copier can be used to construct an ac'le adder. An angle adder is a linkage contain-

ing four equal-length links 0A, OB, CC and OD whose motions are constrained only by the require-

ment that angle AOD be equal to angle ACB plus angle AOC. We will only need a device that

correctly adds angles AOB and AOC when angle AOC is less than -,. To construct such a device,

we take tour equal-length links 0.4, OB. CC and OD and attach a distance copier to 4, B, C and

D that keeps the distance between .A and C equal to the distance between B and D. Then to

ensure that angle AOC is added to angle AOB rather than subtracted from it, we add two links OE

and EB to form a triangle with a right angle at 0. Now we connect E to D with a two-link seg-

ment of length I EB 1. See Figure 2.3.7. These additional links constrain D to be on the correct side

of the line CC.

2.4 Llnkage. for multiplication

In the late 1800's Kempe (K-18761 showed how to construct linkages to "solve" multivariable

polynomial equations. We will make important use of a modified version of his construction. Given

* a set of variables zi,z2,...,z. with bounded domains and a polynomial equation p(z1,22,...,.)-O, we

can design a linkage that will force the z, to satisfy the equation.

D

'B B

E

(a B a+8\%
0A 0 A

(a) , (b)

Figure 2.3.7 An angle adder. In b), the right triangle EOB has been added,
together with a two-link segment connecting E to D of length I EB D.
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Consider the links AB and BC of equal length shown in Figure 2.4.1. Joint A is fastened to

the plane. and joint C moves in a slot on the x-axis. The position of C represents the value of a

variable z whose domain is determined by the slot. The length of the slot is such that B cannot

straighten. Additional links, whose description we omit, can be added to ensure that AB remains

vertical when z-O. Then z-a Co a. Thus for a fixed value of a the variable z can be represented

by the angle a.

We can now rewrite the polynomial equation expressing each z, as acosai. Replace products

of cosines by cosines of sums of angles using the formula

cosa cosO - i(COS(a+ 0)+ cos(a-0))

thereby reducing the equation to the form

as+ d ,cosi.=0,

where each -i is a sum of ai' s.

Using the technique for adding angles described in the previous section, we can design a linkage

that constructs each -I from the a' s. Recall that the construction for adding angles works correctly

as long as the second summand is in the range 10, rj, and since B cannot straighten, this condition is

satisfied by the a's. The terms ,icosi can be summed by constructing a sequence of links of lengths

*' ea, ai,.- connected together at their end points and making each link a, form the angle 7, with the

horizontal by using a translator. The translator is attached to the end points of a, 0, and a joint

A,, where OA, is a link rigidly attached to the moving side of the angle yj having the same length as

Ssa. Finally, the free joint of the last 4, is constrained to a slot on the vertical axis. In this construc-

. tion, insure that O<a,<x by choosing the constant a to be greater than max z, so that B need

not straighten.
B

slotA
A C

Figure 2.4.1 Representing z by angle a

.1 . _ . . _ .



1 Note that for all motions nf the linkages, p (ZI, . ., )=O. Furthermore, for each choice of

r. :o solving the equation, the linkage can move to a configuration that represents this choice. The

~ number of links in the straightforward implementation of Kempe can be exponential in n because

the summation may have exponentially many terms. However, we need the Kempe construction to

enforce only two particular equations, so this problem does not concern us.

7 2 3

4 1 2- 3 2

L

L2

82 -,/2 + a -ac
2' 23

81 /2+ag +a

a) :1=0, aj=Ir/2, at-10, as-30 b) %, increases

L3

33

LL
La3a > L4

c) 3=0O, a2 reaches r d) a, decreases
a 1 /2, anumr/2. a3=30 a,-45, atamr/2, a3-30

Figure 2.4.2 Links tot the polynial ZIZ2z3-0
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One of the equations that we are interested in is zlz 2 z3 -O. This equation states that one of

z1, Z2 or Z3 must be zero. Figure 2.4.2 is a simplified picture of how this equation can be mechani-

cally solved. The equation reduces to

C-€e(al+ a2+ a3)+ coe(a 1+ a-a3)+ Coe(a-r 2+ a3)+ c08(a 1-a-a)--O.

If z, -0, meaning that ao==/2, then the links L, and L 4 must be oriented so that 04=r-0.

Similarly links L2 and L3 must be oriented so that 03 -w-02. If z2-0 then L1 and L must be paral-

lel as must L 2 and L 4. Both conditions are met when x1-0 and z2==0. At this point the shape of

the figure changes from that in (a) and (b) to a parallelogram, shown in (c), that rotates about the

origin.

3. Replaclng the boundaslus top a convex region

Suppose that M is a linkage and R is a closed region whose boundary is a convex polygon. We

will show that by adding additional links to M we can constrain M to the region R without destroy-

ing any motions of M that were totally within R. However the new links may move outside R.

The region R is the intersection of a finite number of half-planes. By adding constraining link-

ages to force the original linkage M to lie in each half-plane, we can force the linkage M to lie within

the intersection of the half-planes and hence within the convex polygon. For each side of the

polygon and each joint J of M we construct a Peaucellier device that constrains J to a semicircular

region containing the polygon and having one of the sides of the polygon on the boundary while

allowing J to move along any curve in the semicircular region (see Figure 3.1). Clearly, this will

constrain the linkage M to remain within R. However, we must show that we have not restricted

the allowable motions of M. As pointed out earlier, identifying joint J, of one linkage with joint J2

of another may restrict the movement of J1 to a region smaller than the intersection of the original

reachable regions of J and J2. In fact the intersection may not even be a connected region. The

subtle point that one must consider is that even when the intersection is connected, the joints still

may not be able to reach all points in the intersection since the possible paths the joints can follow

may not be compatible.

-', . .. . . . . . . " - '-7- " ' ' " ' " " .. .
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I.

Figure 3.1 Polygon inside semicircular region

However, in this particular came, each Peauceiller device constraining I to a region bounded in

* part by a side of Rt allows I to move along ay curve. Hence the allowable motion of a joint J of

M are not restricted.

The number of Peaucellieh devices needed is equal to the product of the number of joints of M

* and the number of sides of the polygon. The lengths of the links in each Peaucellier device are poly-

nomially related to the lengths of the sides of Rt. Consequently, the description of the saw linkage is

polynomial in the size of the description of the original linkage M and region Rt.

4.Replacing the bounade. f be a amonvez region

- 4.1 Overview

In this section we show bow to incorporate into a linkage L the boundaries of an arbitrary

region R,. not necessarily simply connected but having straight-line boundaries. Here two problems

arise. First, the region is 0ot simply the intersection of half-planes. Second, contraining the end-

points of a link to be in a region does not necessarily constrain the entire link to be in the region. to

* Figure 4.1.1, even it A and B are constrained to lie within the region R, the link AB may be par-

tially outside the region.
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Figure 4.1.1 A link with endpoints in a nonconvex region

To handle these problems, let H be the convex hull of the region R. The region H-R can be

quickly partitioned into a small set of triangles, the number of triangles being polynomial in the

number of line segments in the boundary. (See Eves [E-631.) It we can exclude a link from a triangle

without otherwise restricting its motion, then we can restrict a link to R without restricting its

motion. Applying the construction to each link of L will solve the problem.

In Section 4.2 we describe a linkage for tracing a triangle and then use this construction in Sec-

tion 4.3 for constraining a link to remain outside a triangle.

4.2 A linkage for tracing a triangle

In order to construct a linkage that can reach all points in the closed exterior of a triangle, we

begin by constructing a linkage that traces the boundary of a triangle. Suppose that we are given a

triangle XYZ. Then we can construct three straight line motion linkages with designated joints

A,'B and C such that the joints A; B and C move along the segments XY, YZ and XZ respec.

tively (Figure 4.2.1). We would like to construct a fourth linkage with a designatad joint D such

that D must be at the same position as either A,B or C. Then provided D can move freely subject

to the above constraint, we will have constructed a linkage that traces the triangle XYZ.

We force D to be at the same position as either A, B or C by using Kempe's construction a

presented in Section 2.4. Let dl,d and d3 denote the distances from D to the joints A, B and C

I A x3

C
Figure 4.2.1. Forcing D to trace the boundary of a triangle
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respectively. Joint D is at the same location as one of A, B or C provided dld2d3 -O. For conveni-

ence the distances dl,d. and d3 can be translated to the x-axis by means of distance copiers. Adding

the linkage to force d1 .dd=O then completes the construction.

4.3 Constraining a link to remain outside a triangle

We now construct a linkage to constrain the motions of a link so that it can move freely out-

side a triangular region. Consider the triangle XYZ shown in Figure 4.3.1. The triangle is inside a

triangular figure with rounded corners. The distance between parallel edges of the inner triangle and

the outer is d. The corners of the outer triangle have been replaced by circular arcs of radius d cen-

tered at the vertices of the inner triangle.

Using the construction given in Section 4.2, we can constrain a joint A to the boundary of

XYZ and using a similar construction we can constrain a joint B to the boundary of the outer tri-

angular figure. We can connect A and B with a link P of length d. The possible motions of the

link P consist of rotating about the inner triangle but always remaining perpendicular to an edge,

except at the vertices. At a vertex, the link P can rotate from a position perpendicular to one edge

to a position perpendicular to the other.

We now add two additional links AC and AD at joint A snd arms consisting of two links to

connect B and D and B and C. The lengths of the arms when fully e.xtended are designed to force

the angles BAD and BAC to be in the range-",I- Thus if A is on edge YZ of the inner trian-

gle, AD and AC are constrained to the half plane determined by the line through Y and Z. Similar

Fu .

d, B

Figure 4.3.1 Constrining a link to reinin outside a triangle '
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statements apply for the other two edges. When A is at a vertex, AC and AD are constrained to

the union of two half-planes.

Attached to the links AD and AC are platforms that contain slots coinciding with AD and

AC. The end points of the link ST that we wish to exclude from the triangle XYZ move in these

slots. Clearly, ST can never enter the triangle since its end points are always in a half-plane whose

boundary is a line through A perpendicular to AD. The triangle XYZ is outside this half-plane and

thus, by convexity, ST does not intersect the triangle XYZ.

We must show that the motions of ST are not further restricted. When ST is completely con-

tained within a half-plane associated with the edge of the inner triangle, we can fix A at any point

on the triangle's edge and move T by rotating D about A and sliding T along AD. The movement

of S is obtained by analogous use of AC. When ST leaves the half-plane, we move A to the

appropriate vertex and rotate B about A as necessary to keep ST in the half-plane determined by

the perpendicular to AB through A.

5. PSPACE-hardlnem of the reahabilty problem for linkages

We now show that the reachability problem for planar linkages is PSPACE-hard. That is,

given an initial configuration of an arbitrary planar linkage L, a joint J in that linkage, and a point

p in the plane, the question of whether L can be moved so that J reaches p is PSPACE-hard.

Our proof consists of showing that there are linkages that are capable of simulating Linear

Bounded Automaton (LBA) computations and that the size of the description of a linkage that simu-

lates a given LBA on inputs of length n is linear in n and the size of the description of the LBA.

The PSPACE-hardness of the linkage reachability problem then follows from the fact that the accep-

tance problem for LBA's is PSPACE-complete. For definitions of an LBA and PSPACE see [HU-791.

5.2 Some useful inkage

We begin by building up a collection of simple devices that perform various functions. First,

we define a ceU to be a horizontal slot of some fixed size containing a joint. The joint represents the

value of a Boolean variable. The left end of the slot indicates value 0, the right end value 1. Cer-

tain celb will be grouped together to form reoter.
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It is convenient to have a device called a lock that can be used to force the value of each cell in

a register to be 0 or 1 and to prevent the value of any cell from changing during certain time periods.

Figure 5.2.1 shows a lock attached to a register. The horizontal rectangular bar is part of the lock.

The bar is simply a rigid structure made up of links with joints to which one can attach other links.

The bar is attached to a slot so that it can move vertically. The attachment is by two joints so that

no rotation is possible. Attached to the bar are a number of vertical slots. Each joint representing a

Boolean variable is attached to a link, the other end of which moves in one of the vertical slots. The

*: links are designed so that when the bar is in the lower, unlocked position the Boolean variable joint

*can move freely in its cell because the other end of the link can move up and down the vertical slot.

*When the bar is in the upper, locked position each Boolean variable joint is in a 0-1 position. Note

that these variable joints cannot move when the bar is up.

In order to coordinate the linkage motions that take place during the simulation of two moves

of the LBA, we design a tequence controUer with ive variables *1 #2, *3, 11 and 12. Each variable is

represented as a joint in a slot. We restrict the values that the variables can assume by adding a

Kempe linkage to force

*I + J+ (1-l1)1a? + 3 + (1-P+( .-. 2 + # + (1lt)+ 122m_.

The consequence of this equation is that the only possible values the variables can assume are those

shown in Table 5.2.1. The restriction on the value of the variables allows only one variable to

change value at a time, and the variable that can change value is determined by the values of the

cell I cell 2 cell 3 cell 4

0 0 1 0 10 1
locked

! I
unlocked

Figure 5.2.1 A lock on cells of a register (in unlocked position).
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81 #'1 83 11 12
o 0 0 1 - 0010 11

-0 011
1 0 0 - 1 0011 1110

-0 001
0 0 - 0 1 00111

0 -1 11 000 11

0 - 1 1 0 00001 010
0 0 -10

Table 5.2.1 Figure 5.2.2 The allowable
sequence of values

remaining variables. As a result, the only allowable sequence of changes from one set of 0-1 values to

another is that shown in Figure 5.2.2. Of course, the changes can reverse at any time. We will use

the values of these variables to control certain events, thereby sequencing the order in which the

events can take place. In particular, the variables 11 and 12 will control locks, and the s's Will

sequence the order in which these locks are opened and closed.

Since we represent values of variables by positions of joints, we will often use the words "joint"

and "variable" interchangeably. Also, we will denote a variable and the joint that represents it with

the same symbol.

The next device we need is a gate for NOT and a gate for AND. To obtain negation, we use

the distance copier of Section 2.3 to force the distance of a joint from one end of a slot to be the

same as the distance of another joint from the opposite end of its slot. Thus when one cell has value

0, the other has value l and vice versa.

To Construct an AND gate, we force the product of the distances of two joints from the 0-ends

of their slots to equal the distance of a third joint from the 0-end of its slot. Let zl,z2 and z3 be

these distances. Then when z, and z2 both have 0-1 values, Z3 =:1 A ND:2 .

Using these linkages it should be clear that we can construct a linkage to compute any Boolean

function. However, to make it easy to check the correct behavior of the linkage we must be careful

not to form a loop by using the output of a gate as an input to one of its predecessors. This might

cause the linkage to be rigid since the loop might imply a relationship between the rates of motion of
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certain joints that would not be satisfied for any nonzero rate. Our design will contain only two

.* loops, and we will use a decoupling mechanism with them to insure that the entire linkage does not

Ijam.

5.3 Simulation of an LBA

One idea for a mechanical simulation of a given LBA, M, is the following. Suppose that we

have two registers that can be used for storing instantaneous descriptions (ID's) of M. Since Boolean

variables are modeled by joints moving in slots, the contents of a register at a given time will not

necessarily be a sequence of O's and l's. However, we will design a linkage connecting these two

registers so that whenever the contents of both registers are sequences of O's and l's (i.e., whenever

both registers contain ID's), the ID in one represents the result of a legal move of M from the ID in

the other. We would also like the linkage to have the property that as M makes its moves, its ID's

appear alternately in one register and then in the other. In this way, we can simulate the operation

of an LBA. Since we are only interested in the reachability problem, however, we do not need to

build a linkage that actually simulates M; rather, we only need a linkage which is able to simulate

M. The linkage could make other moves as well, provided that it never moved a certain joint J to a

- point p representing an accepting state of M by accident. The linkage we are about to construct can

simulate M, but in addition, it can undo and then redo sequences of moves. Because of this we will

assume that M is deterministic and has no move from any accepting state.

We begin the construction with the two registers R, and R 2 used to store the [D's of M.

-i Attached to the cells of the registers are two Boolean circuits constructed from NOT and AND gates.

The output f I is true whenever the ID in register R 2 follows from the ID in register R I by one move

of the LBA. The output f2 is true whenever the ID in register R, follows from the ID in the register

R 2 by one move of the LBA.

The variables 11 and 12 in the sequence controller described in Section 5.2 are connected to

locks on registers R, and R 2, respectively, with 4i-I when its lock is in the closed position. The

variables ol and 82 are connected to the outputs f I and f2 by the linkage in Figure 5.3.1. Joints fl

and f2 are free to move when el and 82 are 0. However ol or 82 can move to value 1 only if fI or
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I2. respectively, has value 1.

Initially R, holds the configuration of the LBA at time zero, and j-0, s.-0, 83-=0, 11-1

and I--0. This corresponds to the first entry in Table 5.2.2.

We now describe a sequence of events that simulate the behavior of M on a given input. Since

I. is initially 0, the variables in R. can move freely. In particular, they can move to the ID of M

after its first move. Then 1. can move to a locked position, i.e., 1. can take on the value 1. Note

that as variables in R were changing values, fI and f. were also changing, but this is allowed since

siO and s-0. At this point, the sequence controller has advanced to the second state shown in

Table 5.2.2 and can now advance to the third state, with *1-1. This is because fI must be I since

the ID in R. follows from the ID in RI by one move of M. Hence s can move to 1.

Next R I unlocks allowing ol to return to zero. (Note that s, can change to zero independently

of fi's value.) Now the variables in RI can change to the next ID of M. Again, fI and f2 must be

changing while R I is changing, but this is permitted since *I and 82 have value 0. At this point, the

variable 83 can change to 1 and then 1 can lock. The next step is for #. to change value to 1. This

is allowed because 12 h39 value 1: the configuration in R, follows from the configuration in R2 by

one move of M. As soon as *. changes value to 1, then 12 can unlock, and #2 tan change back to 0.

Finally, 83 can change back to 0, completing a cycle of :I'S iquencv 4*troller. During the cycle the

linkage has simulated two moves of the LBA.

Observe that the simulation may proceed forward or backward. If the simulation proceeds

from ID, to ID 2 and then reverses, it may back up into an ID other than ID, since two ID's may

both have the same successor ID. The only concern here is that the simulation might accidentally

back into an accepting ID. This can be prevented by modifying the LBA so that no move is possible

f S f2 s2

Figure 5.3.1 Decoupling mechanism
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from any ID with an accepting state and then basing the design of the linkage on the modified LBA.

Note that the linkage may back into a configuration corresponding to an ID of M that could not be

reached from its initial state. However, since we are only considering deterministic LBA's, the link-

age must move forward along the same computational path it has just backed up. Of course its for-

ward progress may be interrupted from time to time by additional backing up and retracing of

sequences.

Finally, another Boolean circuit is attached to the two registers R1 and R 2. The Boolean cir-

cuit computes a 1 output whenever one of the registers is locked and contains an accepting ID. The

output of this circuit is a joint J. There is a motion of the linkage that moves J to 1 if and only if

the LBA reaches an accepting ID.

This completes the proof that the reachability problem for planar linkages is PSPACE-hard.
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